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Condensation in the Imperfect Boson Gas 
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We prove that Bose-Einstein condensation persists in the imperfect boson gas; 
it is not destroyed by the mean field interaction. 

KEY WORDS:  Bose-Einstein condensation; mean field. 

1. INTRODUCTION 

In the mean field model of a system of interacting bosons, the interaction 
energy is represented by a term aN2/2V which is added to the Hamiltonian 
of the free boson gas; here a is a strictly positive constant representing the 
strength of the interaction, N is the total number of particles, and V is the 
volume of the confining region. This crude model of a system of interacting 
bosons is commonly called the imperfect boson gas. (~) It is of interest 
because the pathological aspects of the free boson gas are removed by the 
mean field interaction: the grand canonical partition function converges for 
all real values of the chemical potential(2); the grand canonical distribution 
of the particle number density is asymptotically degenerate for all values of 
the mean density(3'4); the fluctuations in the particle number density in the 
grand canonical ensemble are normal and shape independent.(5) In this paper 
we prove that Bose-Einstein condensation persists in the imperfect boson 
gas; it is not removed by the mean field interaction. Our starting point is a 
general theory of Bose-Einstein condensation in a noninteracting system of 
bosons given in Ref. 6; there a distinction was drawn between macroscopic 
occupation of the ground state and generalized condensation: macroscopic 
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occupation of the ground state is said to occur when the number of particles 
in the ground state becomes proportional to the volume; generalized conden- 
sation is said to occur when the number of particles whose energy levels lie 
in an arbitrary small band above zero become proportional to the volume. 
Obviously, the first implies the second. However, the second can occur 
without the first; this is called nonextensive condensation. Macroscopic 
occupation of the ground state is a subtle matter; its magnitude depends 
strongly on the shape of the container, for example. Generalized conden- 
sation is much more robust; in the free boson gas it always occurs when the 
number density p exceeds a critical value Pc. It this paper we prove that 
generalized condensation is stable with respect to a mean field perturbation 
of the free-particle Hamiltonian. The proof depends on obtaining an explicit 
formula for the grand canonical pressure of the imperfect boson gas. In 
Section 2 we establish the notation and state the theorem on the existence of 
the pressure in the thermodynamic limit; we list some straightforward conse- 
quences of the theorem. In Section 3 we use the theorem to prove the 
persistence of generalized condensation. In Section 4 we give a proof of the 
theorem. The connection with earlier work is discussed in Section 2. 

2. THE GRAND CANONICAL PRESSURE 

To fix the notation we recall some facts about the grand canonical 
ensemble. Let Z~v(n) be the canonical partition function for n particles at 
inverse temperature /~ in a region of volume V; put Z~v(0)= 1. The grand 
canonical pressure Pv~) is defined by 

e ~vpv(u)= ~ e"~UZ~v(n ) (2.1) 
i t = 0  

for all values of the chemical potential p for which the infinite series 
converges. Denote by N the total number of particles in volume V; we regard 
N as a random variable taking values in the nonnegative integers. The 
probability P~[N= n] that N takes the value n is given by 

P~[N = n] = e"~" Z~v(n ) e -~vvV(~) (2.2) 

The probability distribution function K~(x) of the particle number density is 
defined by 

K~,(x) = P~[N/V <~ x] (2.3) 
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and it is determined uniquely by its Laplace transform 
E~[ e-'N/v] =f[o,o~ e-SX dK~(x), which can be expressed in terms of the 
pressure Pv(P) as 

~_~[exp(--sN/V)] = exp[flV{pv(u - s/flV) - Pv~)} ]  (2.4) 

It follows that the mean density p is given by 

p = E [N/V] = (2.5) 

Now we specialize to the case of a free boson gas. We shall go to the 
thermodynamic limit at fixed mean density. Let {(hi, Vl): l =  1, 2,... / be a 
sequence of  pairs, each pair consisting of  a self-adjoint operator hi, the 
single-particle Hamiltonian of the system, and a real number V l, the volume 
of the system. Let el(1 ) ~< Q ( 2 ) ~  ... be the eigenvalues of h l and let 2l(k ) = 
Q(k) -- el(1 ), k = 1, 2,...; we may take for the canonical partition function for 
a noninteracting bosons, each having h l as single-particle Hamiltonian, the 
expression 

Zt~(n) = ~.  e ~,(k)a,(k) (2.6) 
[n(k) :  Y" n(k)=n} 

It follows that the grand canonical pressure pl~u) is determined by the 
distribution function 

F,(2) = max{k:  21(k) ~ 2}IV t (2.7) 

since, from (2.1) and (2.6), 

exp[flVtP,(,u)] = I-[ {1 - exp[fl0a - 2 , ( k ) ) } } - '  
k 

(2.8) 

so that 

p, (u)  = f p(u 12) dF, (2)  (2 .9)  
[ o , m )  

where 

p~12) =/~-1 log(1 -- e~("-a~) -1 (2.10) 

and (2.7) holds for --oo < a < 0. 
In good cases the sequence {F l : l = 1, 2,... } converges to a distribution 

function F, called the integrated density o f  states, the sequence {Pt(g): 
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l =  I, 2,... } converges pointwise to the grand canonical pressure p~u) of the 
free gas, and p is determined by F through the formula 

p(,u) = f[0,~o)P(P I "~) dF(2) (2.11) 

valid for - m  </1 < 0. 
In Ref. 6 it was shown that a sufficient condition for the above to hold 

is 

(A): O(fl)= lim V~ -1 ~ e -13xt(k) 
tToo k = l  

exists f o r  all fl in (0, oo ) and is nonzero for  some fl in (0, co). In this case F 
is determined uniquely by 

O(fl) =f[0,oo)e ~x dF().) 

It follows from (2.4) and (2.8) that we can regard the random variables N as 
a sum 

N =  ~ n(k) (2.12) 
k 

of independent random variables n(k), each with a geometric thermal 
distribution 

P~' [n(k) >/n ] = exp [nfl~ - 2i(k))] (2.13) 

We interpret n(k) as the occupation number of the kth level. For each ~5 > O, 
let 

Nt(6 ) = ~ n(k) (2.14) 
{k:A,l(k)< 31 

In Ref. 1 we showed that generalized condensation occurs provided (A) 
holds, in the sense that 

lim lim ~-p[N~(a)/Vtl = (p -- Pc) + 
6+0 lToo 

(2.15) 

the symbol U- o indicates that for each l the expectation E~' is taken with 
/~ = r the unique root in (-oo, O) of 

E~ [N/Vt] = p (2.16) 
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and 

Pc =fi0,oo) (e~a - 1) ' dF(2) (2.17) 

In the mean-field model of a system of noninteracting bosons the 
interaction energy is represented by adding to the Hamiltonian a term 
aN:/2Vt; here a is a strictly positive constant and represents the strength of 
the interaction. The new grand canonical pressure p"(u) is given by 

e ~v'p~(") = ~ e"~"Z'/q3) e-~'2/2v' (2.18) 
n = 0  

where Z~'(fl) is the canonical partition function of the noninteracting system. 
As we shall see, the Gaussian factor ensures the convergence of the series, 
and hence the existence ofpa(u),  for all values of/~ in ( -co,  co). All our 
results follow from the following 

Theorem. Suppose that the sequence {(h t, Iil): l =  1,2,...} satisfies 
condition (A); then for a > 0 the grand canonical pressure p~(u) of the 
imperfect boson gas exists for all/a in ( -co,  co) and in given in terms of the 
free gas pressure p(u) by 

pa(la ) = (p - a(u))2/Za + (p o a)(,u) (2.19) 

where a(u) is zero for /a~>apc and is the unique root in ( - co ,0 )  of 
a+ap ' (a )= /a  forg  <apc. 

We postpone the proof of Section 4. We list here some immediate 
consequences of the theorem: 

1. It follows from (2.19) tha t / a~  p~(u) is differentiable for all values 
of/a and its first derivative is continuous and given by 

= ( v  - a ( v ) ) / a  (2.20) 

2. Since/a ~ (p") '(u) is continuous there is no first-order phase tran- 
sition in the imperfect gas; the sequence {K~'": l =  1, 2,..} of distribution 
functions for the particle number density converges to the degenerate 
distribution concentrated at x =  (pa)'(u). For the details, see Lewis and 
Pul& (7) This generalizes an earlier result of Davies, (3) obtained by different 
means; see also Fannes and Verbeure.(4) The precise order of the phase tran- 
sition in the imperfect boson gas to determined by the behavior of the 
integrated density of states F(2) as 2 ~ 0. 
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3. The equation of state of the imperfect gas follows directly from the 
theorem: the pressure 7if(p) as a function of the density p is given by 

~ff(p) = ap2/2 + (p o C0(P) (2.21) 

where /l(p) is zero for P>~Pc and is the unique root in ( - m , 0 )  of 
p'( t . t -ap)=p for P<Pc. The pressure-density isotherm, is not flat for 
P > Pc, as it is in the case of the free boson gas. Nevertheless there is a 
singularity in 7ff(p) at p =Pc (its precise order being determined by the 
behavior of the integrated density of states F00  as 2 ~ 0) so that the critical 
density for the imperfect boson gas is the same as for the free gas. 

3. GENERALIZED CONDENSATION 

The persistence of condensation in the mean-field model is a direct 
consequence of the theorem stated in Section 2. We show that 

lim lim ~-~'"[N,(fi)/Vl] = (p -pc )  + (3.1) 

where p = (pa) ,~)  and E~'" IX] is the expectation of a random variable X in 
the grand canonical ensemble of the mean-field model. Now E~." IX] is given 
in terms of the free gas expectations by 

ET'"[X] = E,"[LX eo-saN2/2v,1/~.[ej,~, ~N2/2V,] (3.2) 

A straightfoward computation using (2.13) and (2.14) yields 

E']'"[exp{,6oNl(~)} ] ----- exp [BVt{/~7~ + d ) - / ~ ) } ]  (3.3) 

where /~'(~) is the grand canonical pressure in a mean-field model with 
single-particle Hamiltonian /T I having eigenvalues {~l(k): k = 1, 2,...} related 
to those of h~ by 

~.,(k) = t )~t(k)' if 21(k) < ~ (3.4) 
/ 2/(k) + a, otherwise 

It follows from (3.2) that 

c~ a + a )  ET'" [Nt(6)/V,] = ~ / ~ ,  (,u (3.5) 
O = 0  

Now {(/~I, VI): /=1,2, . . .}  satisfies condition (A) whenever {(hl, Vl): 
l = 1, 2,... } does, so that it follows from the theorem that 

/~a~) = lim / ~ )  (3.6) 
~T~ 
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exists and is given by 

f~O t) = [U - d~u)]E/2a + ( f  ~ 6)01) 

where 
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(3.7) 

4. THE PROOF OF THE THEOREM 

The proof is straightforward in the case in which/~ < ap~, so we give 
that first. We can rewrite (2.18) as 

exp [ f lV tp~  ) = exp [flV/{(,u - a)2/2a + pl(a)}] 

• ~{exp(- f la[N-  (r a) gl/a]2/2gl)} (4.1) 

for arbitrary a < 0. But 

e-~tx21<~ ~:7[e -x2] <~ 1 

where the lower bound follows from Jensen's inequality, so that 

<~ pT(,u) <~ ~ - a)Z/2a + pl(a) 

(4.2) 

(4.3) 

and 
a + alY(a) =12 for /~ < alYc(a). Thus (~/~a)~a~ + a)]._ 0 exists 
continuous and given by 

-~ P(a0~) 1 2) dF(2) (3.9) 
O ' = 0  

But a-~/~7(P + a) is convex and so, by Griffith's lemma in the version 
proved by Hepp and Lieb, ~8~ 

2 lim / ~  + a) = c~--a/~ + a) (3.10) 
/ l~ ~=o a=0 

It then follows from (3.5), (3.9), and (3.10) that 

lira lira ~2 ~ '" [Nt(3)/V~] = (p - Pc) + (3.11) 
a+o tToo 

where p = (p~)%u). 

f i~)=fto,,  p~l)OdF(2)+fia,~ p(kt[2 +a)dF(2 ) (3.8) 

8(~) is zero for p>~al~c(a) and is the unique root in ( - m ,  0) of 
and is 
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for a < 0. The upper bound gives 

lira sup p~(/z) ~< inf {~ - a)Z/Za + p(a)} (4.4) 
IT~ a<0 

since, by Lemma 1 of Ref. 6, the limit p(ct) = lim/yo~ Pt(a) exists for a < 0 
when condition (A) holds. For/~ < ape the infimum is attained at a(~), t~e 
unique root in ( -a~,  O) of a + ap'(a) =/1, so that 

limT ~u p p~'~u) ~ [• -- a(t_t)]Z/2a + (po  a)(,u) (4.5) 

Now let al(p) be the unique root in ( - o o , 0 )  of a+ap[(ct)=/.t .  By an 
argument based on that used to prove Lemma 3 of Ref. 6 we can show that 
timt~- ~ az(~) = a ~ )  < O. But 

~7~(,) I [ N /~ -  at(P) 2 fl 

and by Lemma 1 of Ref. 6, 

lira p['(at(t.t)) = p"(ct~)) 

(4.6) 

(4.7) 

which is finite since a(p) is strictly negative, and 

lira pt(a,(/.t)) = p(a(p)) 
tTo~ 

(4.8) 

Thus we have 

(l.t - a~))2/Za + (p o a)(p) <~ lim infp~(~) 
Iioo 

(4.9) 

Combining (4.4) and (4.9), the claim is proved for/~ < ape. 
In the case/1 ~ apc the lower bound provided by Jensen's inequality is 

too crude; if there is macroscopic occupation of the ground state then there 
are anomalous fluctuations so that the variance (4.6) of the number density 
does not go to zero as l increases to infinity. However, it turns out that the 
bound (4.9) still holds, but the estimation required to prove it is more 
delicate. We have to prove that 

lira inf V7 ~ log E'~(~')[exp(--fla{ N -  [/J- at(p)]}2/2Vt)| = 0 (4.10) 
tTm 

in the case/~ ) apc ; in this case we can show, as in Lemma 3 of Ref. 6, that 

lim a inu)=0  , lim p,(at(p))=p(O ) (4.11) 
tT~ tT~o 
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To prove (4.10), we split-off 2t(1 ) from the rest of  the spectrum and write 

E ~'[exPl--flaVl[N/V , -- (kt -- a)/a]2/2 } ] 

= ff 
[ o , ~ )  x [o,oo) 

where 

exp{-f laVl[x + y - (u - a)/a]2/2} dH'~(x) dR~(y)  (4.12) 

H~/(x) = PT[n,(1)/VI <~ x] 

I ~ ( Y ) =  PT [ k~>~2 nI(k)/V, <~ Y ] 

But H~(x) is determined by its Laplace transform 

lo,oo) e-tX dH'~(x) = (1 -- e~")/(1 -- e ~(~ 

= (1 - - e  ~ ')  ~ e"~'e -t ' /v'  
n = O  

It follows that (4.12) can be rewritten 

E'{[exp{-f laVt[N/V l - ~ - a)/a]2/2 } ] 

= >' [1 - exp(fla)l exp(nfla) 
r t=O 

X s + y -- ~ - a)/a]2/2} dl('~(y) 

/> ~ [1 - exp(fla)] exp(nfla) 
r t=O 

X ffo,(,-,,)/a) exp{--flaVl[n/VI + y -- (/.t -- a)/aJ2/2} dIs 

/> [1 - exp(fla)] exp(flVla2/2a) 

X f exp{--flV, a[y  -- (u -- a)/a]} aKT(y  ) 
[O,(u - a ) / a )  

where we have replaced the infinite series by its largest term. 

(4.13) 

(4.14) 

(4.15) 

(4.16) 
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But 

f[o,(~,-~)/a) exp{--flg;a[ y -- (p - a)/a]} dlg27(y ) 

/> exp[flV;a(a - a)/a] rio,(. ~)m) dRT(Y) 

>/exp[flV;a(,u -- a)/a] fto,~) [1 - ay/(u -- a)] dRT(y ) (4.17) 

Since we have 

e 3a 

s V;(1 - e e~) 
dH~[(x) x (4.18) 

f z dKT(z ) =p[(a) 
[O,oe) 

(4.19) 

it follows that 

f[ (1 ay ) d/~7(y) = 1 a [p~(a) o,~) r - a p -- a 

Cl e ~a 

- v ; ( 1  - e 

el3a 

V;(1 "e~'~) "] 

(4.20) 

when a = a;~). Thus we have 

(flVl)-l l~ lexp [--flaV;--~ (v;N / ,z-~;~).)  21 I 

>~ + a ;~)  ~u - a;~u)) t- at(/z) log V;(,u -- ate)) 
a V; V; 

(4.21) 

For/~ ) ape the right-hand side of (4.21) converges to zero as l T oe so that 
(4.10) is proved. It follows that limtToo inf p~]~) >/r + p(O). 

But by (4.4) 

lira sup p~[(,u) <~r + p(O) 
t'/ov 

and the proof of the theorem is concluded. 
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